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Excess volumes and Gibbs free energies of several mixtures of hard spheres at constant pressure 
were calculated using the one-liquid and two-liquid versions of the corresponding states theory 
with different combination rules for the equivalent substance parameters and the results were 
compared with the Percus-Yevick compressibility equation for a mixture of hard spheres. New 
combination rules were found, which yield better agreement with the Percus- Yevick equation 
than the van dec Waals combination rules proposed by Leland, Rowlinson and Sather. 

The theory of liquid mixtures is still a tempting field for many semi empirical theories 
as there is no satisfactory rigorous treatment. Recently Barker and Henderson 1 and 
Toxvaerd and coworkers 2 have shown that by far the most important and radial 
distribution function determining part of any realistic intermolecular potential is its 
hard core part, the attractive part being only a background maintaining the high 
density of liquids.. Leland and coworkers3

•
4 proposed then a fairly successful corres

ponding states treatment of mixtures of hard spheres. They suggested combination 
rules for the equivalent substance parameters, which were identical with those used 
many years earlier by van der Waals in connection with his equation of state for 
gaseous mixtures. This work is an attempt to test the range of validity of Leland's 
treatment and to find some other combination rules which would predict properties 
of mixtures of hard spheres with equal or possibly better accuracy than those of 
Leland. 

THEORETICAL 

For a pure liquid with the intermolecular potential of the form 

u(r) = !eooCfJ(r!guoo) (1) 

and whose total configurational energy o/L may be written as a sum of pair interactions 
only 

(2) 
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the following relation for the configurational Helmholtz free energy F holds 5 

F(V, T) = jFo(V/g3, T/I) - 3NkTln g . (3) 

In Eq. (1), ffJ is a common function for all liquids under consideration, r is the inter
molecular distance, 800 and (J 00 are the potential parameters of a reference substance, 
and j and g are parameters scaling the departure of the depth of the potential well 
and the intermolecular distance of a particular liquid from the respective properties 
of the reference substance potential. In Eq. (3), V is the molar volume, T is the 
absolute temperature, and F 0 is the configurational Helmholtz free energy of the ref
erence substance. Analogically we may write for the configurational Helmholtz or 
Gibbs free energy of a mixture 

(4) 
or 

Gx(p, T) = IxGo(pg~/JX' T/lx) - 3NkTln gx . (5) 

Here, Ix and g x are corresponding scaling parameters of the mixture. They are analo
gues of I and g for pure liquids and are usually called the equivalent substance 
parameters. Eqs (4) and (5) are entirely equivalent but unfortunately they definitely 
do not hold exactly even when Eqs (1) - (2) are satisfied unless it is assumed that 
Ix and gx are functions of T and V. For practical purposes however, the dependence 
of Ix and gx on T and V is usually discarded and both Ix and gx are considered as 
functions of the composition only. Leland and coworkers3 proposed for these pa
rameters the following rules 

n 

Ixg~ == Ixhx = L xrxsIrshrs , (6) 
r,s=l 

hx = L xrxshrs with h;:3 = (h;/3 + h;:3)/2. (7) 
r,s 

calling them the van der Waals approximation because of their identity with the 
combination rules used for the van der Waals equation of state for gaseous mixtures; 
Xr stands here for the mol fraction of the r-th component of the mixture and n is the 
number of present components. 

Unlike the one-liquid corresponding states model expressed by Eqs (4)-(5), 
the two-liquid model may be introduced by the equations6 

n 

Fx(V, T) = L: xr[JxrFo(V/hxf' Tllxr) - NkTln hxr] , (8) 
r=l 
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or 

G.(p, T) = L xrUxrGO(phxr/fx" T/fxr) - NkTln hx,] • (9) 
r=1 

The two versions given by Eqs (8) and (9) are not equivalent and in fact they yield 
completely different results. The volumes V/h xr were introduced into Eq. (8) rather 
arbitrarily by an analogy with the Prigogine cell modej? On the other hand, Eq. (9) 
was obtained from Eq. (8) written with unspecified volumes V, in place of Vlhxr 
by minimizing Fx(V, T) with respect to Vr at constant Tand V7. Therefore this second, 
or p, T version should be preferred from the theoretical point of view. A justification 
for Eq. (9) follows also from the following consideration on partial molar volumes. For 
the sake of simplicity we shall assume that all f,s = 1. Then differentiating Eq. (8) we 
obtain 

p = L(xr/hx,) Po(V/h xr) , (10) 
r 

where the dependence on Twas here. omitted because of its irrelevance. For the partial 
molar volume we may write 

(11) 

where Vt is the total volume of the mixture Vt = ntVand ni = xin t. The index x 
denotes that the derivative is performed at constant composition. For the numerator 
in Eq. (11) it holds 

nt(8p/8nJv = (8p/8xJv - L x,(8p/8x,)V,Xk'*X r (12) 

and further 

(8p/8xi)v,Xk = (l/hxi) Po(V/h x;) - L(x)h~j) Po(V/h xj) (8h xj/8xi) -
j 

- L(xF/h~j) (8Po(V/h xj)/8(V/hxj)) (8h xj /8x j ) • (13) 
j 

If we assume further that 

(14) 

which will be shown later on to be a fairly good approximation, then Eq. (13) redu
ces to 

(15) 

For a binary mixture, this leads immediately to 
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Substituting it into Eq. (11) we obtain the result that either VI < ° or V2 < 0, which 
is obviously a nonsense. By a tedious algebra, the same result may be obtained with 
hxj given byEq. (31) for m = 3 and most probably with any other combination rule 
for hxj • 

On the other hand, differentiating Eq. (9) for V yields 

Then 

and 

v = IXrhxrVo(phxr) == IxrhxrVor . 
r r 

Vi = V + (av/ax;) - Ixr(av/axr) 
r 

(av/ax i) = h,iVOi + IxFolahxj/axi) + 
j 

+ IXjhxj[aVo)a(phxj)] p(ah,j/axi) . 
j 

Taking into account Eq. (14) we obtain 

and finally 

which looks quite reasonably. 

(17) 

(18) 

(19) 

(20) 

(21) 

Leland and coworkers4 proposed the combination rules for the two-liquid model 
in the form analogical to the one liquid model 

and 

fuh'r = I x.fr.h .. 
5=1 

n 

hxr = I X,hr•· 
.=1 

(22) 

(23) 

They tested their one-liquid model with the combination rule given by Eq. (7) on 
mixtures of soft spheres3 and compared the results with the rather accurate8 Percus
Yevick compressibility equation of state of a mixture of soft spheres9

,lO. They ex
panded the excess Helmholtz free energy FE in powers of <5h = h - 1 and found 
a good optical coincidence between the expansions of FE for the Percus-Yevick 
compressibility equation and that based on Eqs (4) and (7). However, it may be 
shown that the respective expressions differ by as much as NkT in the range of the 
existence of liquids, which may be quite a large amount of energy. A definite dis
advantage of their expansion method is that it is limited to <5h -+ 0, but at the same 
ti~e the authors tried to arrive at some results applicable to molecules widely different 
in size. 
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A final remark should be made in connection with Eq. (7). This equation was proposed some 
10 years ago by Leland and coworkers3 and it was based on a perturbation treatment of the radial 
distribution function, which was expanded in powers of r- 1 and all terms beyond the second 
were neglected11

. Erroneously, the term leading to Eq. (7) was added in their paper quite arbitra
rily to the expansion and therefore Eq. (7) must be regarded as an empirical expression, which 
is justified as any other empirical expression for h x that satisfies correct limiting relations . 
limhx = h jj • 

Xi"""! 

We decided to compare results of the corresponding states treatment expressed 
by Eqs (4), (8), and (9), on a mixture of hard spheres obeying the Percus-Yevick 
compressibility equation of state for several neW rules for parameters h. or hxr. 
For a binary mixture of hard spheres, Eqs (4), (8) and (9) can be written discarding 
the dependence on T as 

F,(V) = Fo(V/h.) - NkTln h" (24) 

2 

Fx(V) = L xr[Fo(V/h xr) - NkTln hxr] , (25) 
r=l 

and 
2 

Gx(p) =L Xr[GO(ph xr) - NkTln hxJ . (26) 
r=l 

The following rules for hx were used 

hx = [L xrxsh~~/3]3/m for m E 0,5) , (27) 
r,s 

(28) 

for n E (1,3) , (29) 

and 

hx T= L xrxshrs with hrs = [1/2(h;/3 + h;;3)]3/2 
• (30) 

r,s 

Except for Eq. (30), the usual rule for hrs given in Eq. (7) was assumed. Eqs (27) to 
(30) were used together with Eq. (24). For the two-liquid versions given by Eqs (25) 
and (26), the following rules were tested 

(31) 

and 

hxr = hrr · (32) 
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CALCULATIONS 

Excess Gibbs free energies GE and volumes V E at constant pressure p were calculated for several 
binary mixtures of hard spheres for all proposed mixiJ;lg rules and for both one- and two-liquid 
versions of the corresponding states theory according to the equations 

(33) 
and 

(34) 

For the reference substance as weJl as for pure components, the Percus-Yevick compressibility 
equa~i?n of state of hard spheres12 ~as used 

~- l+Yi+yl with Yi= 1tNard6Vi = 1tNhiia~o/6Vi' 
NkT - (1 - Yi)3 

(35) 

where aoo is the respective hard sphere diameter. For a given value of p, Eq. (35) was solved for 
Vi and the resulting Vi was substituted into the Percus-Yevick equation for the configurational 
part of G i 

(36) 

v~iu'~-~; V of the mixture at the given p were obtained from the pressure or volume derivatives 
of Eqs (24)- (26) 

p = (l/h x)PoW/h x), (37) 

2 

p = L (xr/h xr) PoW/h xr) (38) 
r=1 

and 
2 

\ " ;( V= L xrhxrVo(Phxr)' (39) 
r=1 

The r~sulting volumes were then substituted into the respective equations for the Gibbs free 
energy and finaJly the values of the excess functions were calculated from Eqs (33) and (34)_ 

Th<; results were compared with similar calculations using the Percus-Yevick compressibility 
equation of state for the mixture of hard spheres12 

(40) 

with 
2 

';k = (1tN/6 V) L xra~r . (41) 
r=l 

The calculations were performed on the computer Minsk 22 for pai2/kT E (1-40), for h11/h22 = 

~ 0-4;0'6, and 0'8, and for xl E (0-1, 0-9). 
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DISCUSSION 

We may see from Table I and Figs 1-4 that the optimum value of m in Eq. (27) 
in the one-liquid version is m = 4. This compares well with the values of m determi
ned by putting the difference between the Taylor expansions of the Percus-Yevick 
and the one liquid version 3 equal to zero; we found that m = 3·7 -4·1 for nNuoo!6V= 
= 0·4-0·6. Eqs (28) and (30) and Eq. (29) for n = 2·5 yield almost identical results 
which are only slightly worse; the latter results are not included in the tables. The 
results of the so called van der Waals approximation, that is of Eq. (27) for m = 3, 
are clearly in a considerable error, especially for larger differences in the hard sphere 
diameters of both components. It follows from Table III that the two-liquid (v, T) 
version of the corresponding states theory cannot be used for predicting properties of 
hard spheres with the combination rules given by Eqs (31) and (32).lt is probably not 
worth trying to search for combination rules which could be used successfully with this 

TABLE I 

Thermodynamic Excess Functions for the Equimolar Binary Mixture of Hard Spheres According 
to the One-Liquid Theory of Corresponding States Expressed by Eq. (24) with the Combination 
Rules Given by Eqs (27)-(30) atpa~2IkT= 12 and V2jNa~2 = 1·07267 

hll jh22 = 0·4, hll jh22 = 0·8, 
Type of VdNa~l = 1·36397 VdNa~l = 1-13026 
Equation . 

VEjNa~2 GEjNkT VE/Na~2 GEjNkT 

Percus-Yevick Eq. -0·00024 -0·0267 - 0·00001 -0·0017 

Eq. (27) for m = 1 -0·03089 - 0·4280 - 0·00248 -0·0339 
2 - 0·02094 -0·2848 - 0·00170 -0·0227 
3 - 0·01106 -0·1422 - 0·00092 -0·0115 
3·5 - 0·00617 -0·0716 -0·00052 -0·0058 
3·9 -0·00229 -0·0155 -0·00021 - 0·0014 
4 -0·00132 -0·0015 - 0·00013 - 0·0002 

0·00825 0·1365 0·00065 0·0110 

Eq. (29) for n = 1 - 0·03089 -0·4286 - 0·00248 - 0 ·0339 
2 -0·01095 -0·1405 -0·00092 - 0·0115 

0·00867 0·1426 0·00065 0·0110 

Eq. (30) -0·00113 0·0013 - 0·00013 - 0·0002 

Eq. (28) -0·00118 0·0004 -0·00013 -0·0002 
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FIG. 1 

Pressure Dependence of Excess Volumes of 
the Equimolar Mixture of Hard Spheres at 
hll/1z22 = 0·4 and Xl = 0·5 for Different 
Combination Rules for Izx in the One-Liquid 
Corresponding States Theory and for the 
Percus-Yevick Compressibility Equation 

PY Percus-Yevick compressibility equa
tion; m constant in Eq. (27); VOW Eq. (27) 
for m = 3; 1 Eq. (28); 2 Eq. (30). 
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FIG. 3 

Pressure Dependence of Excess Volumes of 
the Equimolar Mixture of Hard Spheres at 
hll/h22 = O·g and Xl = 0·5 for Different 
Combination Rules for Izx in the One-Liquid 
Corresponding States Theory and for the 
Percus-Yevick Compressibility Equation 
F~r the description cf Fig. 1. 
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FIG. 2 

Pressure Dependence of Excess Gibbs Free 
Energies of the Equimolar Mixture of Hard 
Spheres at 1z1lflz22 = 0·4 and Xl = 0·5 for 
Different Combination Rules for Izx in the 
One-Liquid Corresponding States Theory 
and for the Percus-Yevick Compressibility 
Equation 

For the description cf Fig. 1. 
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FIG. 4 

Pressure Dependence of Excess Gibbs Free 
Energies of the Equimolar Mixture of Hard 
Spheres at Izll/1z22 = o·g and Xl = 0·5 for 
Different Combination Rules for hx in the 
One-Liquid Corresponding States Theory 
and for the Percus-Yevick Compressibility 
Equation 

For the description cf Fig. 1. 
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version as it is well known that it is theoretically less plausible than the (p, T) version. 
By inspection of Table II and Figs 5 - 8 we find that the optimum value for m 
in Eq. (31) in the"(p, T) version is m = 5-6. Eq. (32) yields zero values for both 
excess functions as is clearly seen from Eqs (26), (33) and (34). This is not far from 
true because it is definitely known 8 that the values of the excess functions of mixtures 
of hard spheres at constant pressure are small. Considering the symmetry of the ex
cess functions with respect to XI' the Percus- Yevick equation in the parameter range 
covered yields almost symmetrical curves for both GE and VE with minima at x [ ~ O' 5. 
This is true for the one-liquid version only for m = 3 and for the two-liquid (p, T) 
version for m = 3 - 4. However, the differences in the remaining cases are not so stri
king as to render the general considerations based on the results for XI = 0·5 invalid. 
The range for pressures and ratios of hard sphere diameters was chosen so that 
to cover approximately both the region of existence of liquids and the wide variety 
in sizes of different molecules encountered in calculations of vapour-liquid equilibria 
at D9rmal or elevated; pressures . . Thus we believe that for real molecules the one
liquid version together with Eq, (27) for m = 4 and the additional rule for Ix in the 
formll 

(42) 
r,s 

TABLE II 

Thermodynamic Excess Functions for the Equimolar Binary Mixture of Hard Spheres according 
to the p, T Version of the Two-Liquid Theory of Corresponding States Expressed by Eq. (26) 
with the Combination Rules Given by Eqs (31) and (32) atpo:i2fkT = 12 and V2fNa~2 = 1'07267 

Type of 
Equation 

Percus-Yevick Eq_ 

Eq_ (31) for m = 1 
2 

Eq. (32) 

h11f1l22 = 0'4, 
VdNall = 1·36397 

vEfNa~2 GEfNkT 

-0·00024 - 0·0267 

- 0·02317 -0·3215 
-'- 0-01820 - 0·2496 
~0-01324 - 0·1781 
-0-00834 -0-1073 
- 0-00350 -0-0376 

0-00123 0·0308 

0 0 

h[ dh22 = 0'8, 
VdNall = 1'13026 

VEfNa~2 GEfNkT 

- 0'00001 - 0,0017 

- 0-00186 -0-0254 
- 0-00147 -0-0198 
-0,00108 - 0-0142 
- 0-00069 - 0-0086 
- 0-00030 - 0-0030 

0-00009 0-0026 

0 0 
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FIG. 5 

Pressurb Dependence of Excess Volumes 
of the Equimolar Mixture of Hard Spheres 
at hll/h~2 = 0·4 and xl = 0·5 for Different 
Combination Rules for hxr in the Two-Liquid 
Corresp'onding States Theory and for the 
Percus-Yevick Compressibility Equation 

PY Percus-Yevick compressibility equa
tion; m constant in Eq. (31); VDW Eq. (31) 
for m = 3; 1 Eq. (32). For m = 1 the (V, T) 
version was used; in the remaining cases, 
the (p, T) version was' employed. 
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FIG. 7 

Pressure Dependence of Excess Volumes 
of the Equimolar Mixture of Hard Spheres 
at hll/h22 = 0·8 for and xl = 0·5 Different 
Combination Rules for hxr in the Two-Liquid 
CorrespoIiding States Theory and for the 
Percus-Yevick Compressibility Equation 

'For the description cf Fig. 5. 
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FIG. 6 

Pressure Dependence of Excess Gibbs Free 
Energies of the Equimolar Mixture of Hard 
Spheres at hll/h22 = 0·4 and Xl = 0·5 for 
Different Combination Rules for h xr in the 
Two-Liquid Corresponding States Theory 
and for the Percus-Yevick Compressibility 
Equation 

For the description cf Fig. 5. 
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FIG. 8 

Pressure Dependence of Excess Gibbs Free 
Energies of the Equimolar Mixture of Hard 
Spheres at hll/h22 = 0·8 and Xl = 0·5 for 
Different Combination Rules for Izxr in the 
Two-Liquid Corresponding States Theory 
and for the Percus-Yevick Compressibility 
Equation 

For the description cf Fig. 5. 
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TABLE III 

Thermodynamic Excess Functions for the Equimolar Binary Mixture of Hard Spheres according 
to the V, T Version of the Two-Liquid Theory of Corresponding States Expressed by Eq. (25) 
with the Combination Rules Given by Eqs (31) and (32) atpu~2/kT= 12 and V2/Nu~2 = 1·07267 

hll/h22 = 0·4, hll/h22 = 0·8, 
Type of Vt/NuIl = 1·36397 Vt/NuIl = 1·13026 

Equation 
vEINu~2 GE/NkT vE/NuL GE/NkT 

Percus-Yevick Eq. -0·00024 - 0·0267 - 0·00001 - 0·0017 

Eq. (31) for m = 1 0·02366 0·1434 0·00295 0·0203 
2 0·02864 0·2152 0·00334 0·0259 
3 0·03360 0·2867 0·00373 0·0315 

Eq. (32) 0·14417 1·5405 0·01849 0·1781 

or the two-liquid (p, T) version with Eqs (32) or (31) for m = 5-6 and 

. fxrhxr = Lxsfrshrs 
s 

(43) 

could be successfully used to predict properties of mixtures from those of pure 
components. The proposed equations could also be applied for the determination 
of combination rules for constants in empirical equations of state such as for example 
the recently most successfully used Redlich-Kwong equation in calculating vapour
liquid equilibria at high pressures13

, 14. Further calculations are presently being 
undertaken. 
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